蝴蝶定理的研究与推广
摘 要:对于蝴蝶定理的研究和推广,提出了关于弦(贯穿整个图形的核心)在圆的切线上的证明,并进行了求证与推广然后对弦上交点个数以及相关对应点进行了讨论并总结汇总了表格,最后通过第三部分得出了论文的核心结果。
关键词:蝴蝶定理;推广
在说到与圆有关的命题时,许多的教育工作者都会想到一个经典的几何命题——蝴蝶定理,并用此定理作为讲授和研究与圆有关问题的典型例子。蝴蝶定理的英文是Butterfly Theorem,蝴蝶定理是古典欧式平面几何最杰出的结果之一。而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1994年2月号,题目的图形就像一只蝴蝶.蝴蝶定理作为一道著名的平面几何问题,有人赞誉它为欧式几何园地里的“一颗生机勃勃的常青树”。蝴蝶定理最先作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》,中同时刊登了蝴蝶定理的两个证明方法.其中一个是英国著名的自学成才的数学家霍纳的解法.霍纳受过中等教育,18岁时担任其母校校长.关于这个定理的证法多的不胜枚举,至今仍被数学热爱者研究,本文在给出蝴蝶定理的一个简洁证明的基础上研究其推广形式并加以证明。
一、蝴蝶定理的介绍
接下来为大家介绍蝴蝶定理的一种形式。定理1.1如,1.1作直线AB交圆O与A,B取中点M,CD与GH交于M连接DG,CH分别交于AB于P,Q两点,则MP=MQ。证明:易知△CMF~△EMD,MG,MH为这两个相似三角形对应边上的中线,所以△GMF~△HMD,则∠FGM=∠DHM.又因为O,G,P,M四点共圆,有∠POM=∠PGM=∠QHM=∠QOM由此得Rt△POM≌Rt△QOM,所以PM=QM 證毕
以上为蝴蝶定理的关于线在圆内的标准推广,下面介绍一种关于线在圆外的推广。定理1.2 如图1.2做圆O,做园外一直线过圆心做垂线交直线于点M,在直线上取M为对称点的E,F过E,F作直线交于A,B,C,D.直线与BC,AD交于S,T如图1.2,由于下文会有该题目的讲解所以题目及证明在这里不再赘述。蝴蝶定理的形式千变万化其中不乏在特殊图形中的推广,接下来笔者为大家展现以下证明。定理1.3[5] 如图1.3,△EAP中DM与AP延长线交于C点,则。证明:由于PM=QM,由(1),(2)得=1(5)。△EAM中,DQ交AM的延长线于点B(3)。△FBM中,CP交BM的延长线于点A,(4),由(5),(6)得(7),因此(8),由(7),(8)得MF×QE=ME×PF所以ME=MF。而本题则以多圆为主线,利用圆上的性质与定理进行求解,该题证法略。定理1.4[4] 如图1.4AB为圆O内任意一条弦,过M做CD,EF, △EMD与△CMF外接圆与AB交点为G,H则MG-MH=3(MA-MB)。
二、关于前人推论与我的思考
在了解大量推广后我进行了分类总结并归纳出如下定理。本节中部分定理已经做过介绍便不再赘述。定理2.1该定理与1.1基本图形略有不同此外弦上交点也多了一个。如图2.1,PQ为过圆的一条直线,点M则为PQ的中点,E,F为PQ上关于M对称的点。过点E,F作两条弦AB,CD交于圆O,依次连接BC,AD交于PQ与点T,S所以MS=MT。定理2.2[4] 该定理与定理1.1基本图形较为近似,1.1通过做垂线的方法进行求解而该定理则是延长线段进行求解。如图2.2,△ENQ被直线EF所截=1,PNQ被直线CD所截=1。定理2.3[4] 该定理与2.1颇为相似弦上交点个数相同基本图形三角形交点略有不同。如图2.3,做圆O取M为弦AB中点H,N为AB上任意两点且关于M点对称,过H,N做任意两条弦CD,EF交AB于Q,P则MP=MQ。
定理2.4[4] 该定理较为特殊是蝴蝶定理在四边形中的应用弦上交点与定理2.2相同。如图2.4,如果BD为ABCD中线,令其对角线交点为M,使AB,CD交于P,Q,与AD,BC交于S,R连接PR,SQ与AC交于G,H,则MG=MH。定理2.5[4] 该定理则想法较为新颖,设计出了蝴蝶定理关于弦在圆外的情况弦上交点个数也较多。如图1.2,题目及证明在这里不再赘述。证明:在△ESA中,,在△EBT中,,在△FTC中,△SFD中.将上面四式两边相乘,同时∠EAC=∠BCD, ∠B=∠D.则有EA×EB×TF×FS=ES×ET×CF×FD.由于OM⊥EF,EM=FM,所以EA×EB=CF×FD.即TF×FS=ES×ET,所以ME=MF,易得MS=MT 证毕,定理2.6[4] 该定理描述了蝴蝶定理关于在直线之间夹角的情况。如图1.3题目及证明在这里不再赘述。
通过对六个定理及其基本图形,弦位置,弦上交点个数的总结及判断得出了关于蝴蝶定理的更深层次的理解与探讨,接下来笔者也会在下文中加入自己关于蝴蝶定理的研究与推广方面的思考以及探究。
三、关于我的思考
在前面了解了大量蝴蝶定理推广后,我初步有了自己的想法做出了该定理由于对蝴蝶定理关于弦在切线外的情况了解不够充分导致该定理证明出现问题列举此定理只是为了展示本人在研究过程中的思考。如图3.1做一条切线过圆O交于AD以M点为对称点做E,F取任意点A,B连接AF,BE,A过圆与BE交点于点C,B过圆与AF交于点Q,连接AC交EF于点P,则PM=QM。
最新推荐
- 1政府及行政事业单位管理会计应用问题研究
- 2高等学校债务风险管理研究
- 3基于平行文本比较模式的准技术词汇翻译探讨
- 4核心素养背景下的初中体育教学思考
- 5低压低产气井排水采气工艺技术分析
- 6“123”模式推进党组织领导的校长负责制
- 7孩子在家有说有笑,为何一出门就一言不发?
- 8肥厚型心肌病家系中MYBPC3-D1149fs*40新发突变的基因型及临床表型研究
- 9液压调速器AMESim动态仿真与参数优化
- 10基于经筋理论探讨活血定痛液定向透药对膝骨性关节炎患者及膝关节功能的影响
- 11文化生产还是文化再生产?——“学一代”与“学二代”的教育冲突与反思
- 12食物链
- 13难写字
- 14基于TPACK框架的,大学英语智慧教学评价体系探究
- 15跟着金庸的武侠小说,学习活用通感修辞
- 16新课改下高中英语教学中培养学生跨文化交际能力的策略
- 17封二:·科学小达人·
- 18中、蒙医文化融入医学通识英语课程教学的探索与思考
- 19树叶
- 20喵,一起藏猫猫吧
- 21克鲁普斯卡雅学前劳动教育思想及其启示
- 22难忘的体验
- 23凭空消失的10天
- 24冰雪城奇遇
- 25有点可爱有点“坏”
- 26高考地理试题体现“交通强国战略”的分析及教学启示
- 27在探秘自然中走进生活
- 28太,太
猜你喜欢
- 1“学习二十大永远跟党走奋进新征程”主题演讲比赛演讲稿10篇(全文)
- 22023年度党的路线方针政策10篇(2023年)
- 3组词造句24篇(完整)
- 4最新工程居间合同诈骗(十五篇)
- 5教师师风师德总结依法执教(19篇)
- 6组织开展家庭教育促进法宣传活动简报4篇(2023年)
- 7城管年度考核表7篇【精选推荐】
- 8职工工会申请书20篇
- 9入党谈话内容及注意事项13篇(完整)
- 10江西大山尾矿区铌钽矿地质特征及找矿标志研究
- 11试用期转正意见和建议4篇
- 12《民法典》概括条款的识别标准与类型构造
- 13高校原创红色话剧的审美创新——以长沙学院《日出湘江》为例
- 14最新七年级下册道德与法治教学计划(3篇)
- 15医院服务效能提升培训学习心得体会4篇
- 16执行政治纪律和政治规规矩方面3篇【优秀范文】
- 17会计职业道德风险及防范措施
- 18业主大会书面征求意见表决书4篇(完整文档)
- 192023年度村环境卫生整治活动简报8篇(范文推荐)
- 202023年度贯彻落实八项规定15篇
- 212023党员教师民主生活会批评与自我批评优秀3篇
- 22自立自强的议论文7篇
- 232023年大学试卷分析改进措施13篇
- 24不同类型钾肥对烤烟上部叶钾含量与碳氮代谢及品质的影响